the miracle of the hormones

The Planning and Timing in the Messenger Molecules

Nerve messages from one neuron to another are sent as electrical impulses along the axon. They are sent from the ends of the axon to another nerve cell by nerve transmitter hormones located on the end of the nerve. Dopamine is one of those transmitter hormones.

The density of the chemical messengers and the time they remain in the synapse cavity directly influence the communication between the two neurons. Different mechanisms exist for each chemical messenger. Some messengers disperse after they deliver their messages. Others are broken down by special enzymes after they have performed their functions. For example, the messenger molecule called "acetylcholine" is converted by a special enzyme into choline and acetate.

There is yet another marvelous mechanism in the nerve cells: The messengers that transmit a message to the receptor cell are gathered back again into the transmitter cell and are stored there to be used in a subsequent message. This operation is performed by a few special molecules. The activity of the dopamine and serotonin molecules is regulated in this way. If we consider how difficult it is to recycle products, we can better understand the effectiveness of this mechanism in the nerve cells.

Every phase of chemical communication occurs within an incredibly delicate balance. Every messenger molecule used in every communication, and every protein and enzyme that performs a function in the various stages, must be designed. The number of messenger molecules that will be stored, how long the receiver cell will be stimulated, the time for disintegration or reassembly are a part of the necessary communication balances. Moreover, an important number of details relating to communication balances is still unknown.

In the picture you see a patient with Parkinson's disease working with her doctor. In their attempt to find a cure for Parkinson's, scientists continue to do research on this disease.

Parkinson's disease is a condition that destroys muscle coordination, makes movement difficult, and causes tremors. The cause of this disease is the destruction of the balance between the messenger molecules dopamine and acetylcholine. When some nerve cells in the brain produce less dopamine than is required, the result is the loss of muscle control. This fact came to light only recently (Professor Arvid Carlsson was awarded by the Nobel Prize for his discovery).

These delicate balances and complex mechanisms are not composed of a random series of events. The One Who creates them, keeps them under His power, gives them to the service of human beings and takes them back again when He wishes, is God, to Whom belongs eternal power and knowledge.


The Electrical Communication Between Neurons

At every moment, every nerve cell experiences a complex conversion. Communication via neurons is an operation that occurs when electro-chemical or chemical messengers generate an electrical signal.

In order to understand electrical communication, we must first consider another balance mechanism: the marvelous balance formed by the electric charge in nerve cells, the ions. Ions perform an important function within neurons; there is one positively charged sodium and potassium ion, two positively charged calcium ions and one negatively charged chloride ion. In addition, there are some negatively charged protein molecules.

A message left on a receptor on the membrane of a nerve cell starts a series of reactions inside the cell similar to a row of falling dominoes.

In its resting state, a neuron is negatively charged. In this state, negatively charged proteins and various ions are within the nerve cell. Compared to the number outside, there are more potassium ions and less chloride and sodium ions inside the neuron.72 These are not arranged at random, and this proportion is specially determined and maintained.

The message left on the membrane receptors in the nerve cell initiates a serial operation in the cell that is reminiscent of the domino effect. In the course of this operation whose details are not yet fully known, it is thought that hundreds of proteins perform a function. This operation happens serially and in perfect order, causing particular ion channels to open on the cell's membrane. The result is that the sodium ions that are taken inside the cell neutralize the cell that earlier had a negative electric charge (-70 millivolts). The transfer of ions between the inside and the outside of the cell creates an electric signal. The operations that we have described here in the simplest of terms begin and end in less than one thousandth of a second.

The signal that is created travels quickly along the axon and initiates the chemical operations that will pass the message to other cells on the synapse points on the ends of the terminals. The average speed of the signal along the axon is 120 meters per second.73 A simple calculation will show us that this speed equals 432 kilometers per hour.

The nerve cell that transmitted the message completes its task and returns to its resting state. This restoration happens by the opening and closing of the sodium and potassium channels within a period of less than one thousandth of a second. Without a clock produced by means of high technology, you cannot measure one thousandth of a second. Imagine that you had such a watch; you still could not coordinate the opening and closing of the ion channels on one single nerve cell. If you attempted to initiate the millions of operations that occur every moment, a mistake in the timing of just one thousandth of a second would derail the operations.

Ions have an important function in a neuron. There is one positive sodium ion, one positive potassium ion, two positive calcium ions, and one negative chloride ion. The proportion of potassium inside the neuron is larger compared to that on the outside while the proportion of chloride and sodium is lower. What we have to notice here is that this arrangement must be specially designed and maintained in order to keep these balances in a definite proportion; it cannot happen by chance.

An Evident Fact

Neurons establish thousands of connections among themselves.

There is another feature that distinguishes neurons from the rest of our cells. Other cells in our bodies are constantly being renewed but neurons do not change. With age, their number decreases but the nerve cells present in a person's old age are the same ones he had in his youth. What has been described to this point has been a really simplified account of communication systems in the neurons that function throughout a person's life. Even someone with intelligence and knowledge would have difficulty understanding these things; cells and hormones have performed these functions very successfully without error in the millions of individuals that have lived in the world since the beginning.

How did these highly complex systems in each one of our nerve cells come into being? How did the incredible harmony among the hundreds of millions of cells in our bodies come into existence? How is such marvelous communication system ensured without confusion arising? How does this system, which depends on remarkably delicate balance and timing, work without making an error?

It is natural that hundreds of questions about "how" fill the human mind. Despite all these facts, some scientists vainly try to defend the evolutionist claim that these flawless systems came to be totally as a result of blind chance. Impossible is not too strong a word to describe the attempts of evolutionists who try to connect the origins of life to an imaginary "primeval cell" formed by chance; they have no answers to the questions posed above.

One point in articles written by evolutionists attracts our attention; there is no scientific explanation of how evolution happens. Instead, they propose that the molecules and proteins that function in communication appear at some stage in so-called evolution, and that they have come down to us with no change in their structure. Certainly, a claim such as this, which has not even the slightest proof, is an immense deceit. In the guise of science, they play a game of words designed to deny creation.

All praise belongs to God, the Lord of the heavens and the Lord of the Earth, Lord of all the worlds. All greatness belongs to Him in the heavens and Earth; He is the Almighty, the All-Wise.
(Qur'an, 45: 36-37)

There is no doubt that there is only one explanation why such a marvelous mechanism has come into existence: God, the Lord of all worlds, creates cells from nothing. It is our Lord, the Creator of us all, Who designs the incredibly complex and interconnected communication systems in cells down to their finest details. It is God Who gave never resting atoms, proteins and molecules to our service; and it is only He Who is worthy to be praised and exalted.

72 Eric H. Chudler, "Brain Facts and Figures," 2001,
73 Lionel Bender, The Human Body:Its Mysteries and Marvels, Crescent Books, 1992, p. 60.